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Motivation

● Ever-increasing of volume of image data in all fields
● Analysis of imagery is time-consuming and labor-intensive
● Lots of existing work on supervised image classification

○ Wagstaff, Kiri L., et al. "Deep Mars: CNN Classification of Mars Imagery for the PDS Imaging Atlas." 
Conference on Innovative Applications of Artificial Intelligence. 2018.

● However, scientific discovery relies on unexpected observations
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A brief introduction to DEMUD

● A prior-free novelty detection algorithm
● Prioritizes interesting data by attempting to discover all existing 

classes as quickly as possible
● Provides explanations for its prioritizations

Wagstaff, Kiri L., et al. "Guiding Scientific Discovery with Explanations Using DEMUD." AAAI. 2013.
Wagstaff, K. L., N. L. Lanza, and R. C. Wiens. "Unusual ChemCam Targets Discovered Automatically in Curiosity's First Ninety Sols in Gale Crater, 
Mars." Lunar and Planetary Science Conference. Vol. 45. 2014.
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DEMUD + images

● Ongoing work since Summer 2017
● Presented at 2018 ICML Workshop on Human Interpretability in 

Machine Learning

Wagstaff, Kiri L., and Jake Lee. "Interpretable Discovery in Large Image Data Sets." 2018 ICML Workshop on Human Interpretability in Machine 
Learning. 2018. pp. 107-113 4
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Example output (“Yellow” ImageNet dataset, fc6)

Deng, Jia, et al. "Imagenet: A large-scale hierarchical image database." Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE 
Conference on. Ieee, 2009.

Selection Expected Novel
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Example output (MSL Image dataset, fc6)

Kiri L. Wagstaff, You Lu, Alice Stanboli, Kevin Grimes, Thamme Gowda, and Jordan Padams. "Deep Mars: CNN Classification of Mars 
Imagery for the PDS Imaging Atlas." Proceedings of the Thirtieth Annual Conference on Innovative Applications of Artificial Intelligence, 2018.
10.5281/zenodo.1049137

Selection Expected Novel
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Improve the Visualizations!
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A Better Visualization Method

● Dosovitskiy & Brox 2016 NIPS

● Dosovitskiy & Brox 2016 CVPR
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Dosovitskiy, Alexey, and Thomas Brox. "Generating images with perceptual similarity metrics based on deep networks." Advances in Neural 
Information Processing Systems. 2016.
Dosovitskiy, Alexey, and Thomas Brox. "Inverting visual representations with convolutional networks." Proceedings of the IEEE Conference on 
Computer Vision and Pattern Recognition. 2016.
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Evaluating Visualization Methods

● These methods were never intended to visualize modified feature 
vectors

● Specifically, DEMUD performs a subtraction in feature space for its 
explanations
○ Selection - Expected = Novel

● Unclear whether visualizing modified features can be meaningful
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D&B L2 Results
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D&B ADV Results
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Plotting the feature distribution (fc6, 4096 values)
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Mean-shift normalization
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D&B ADV Results (with mean-shift normalization)

(expectation)
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Improved DEMUD visual explanations

Deng, Jia, et al. "Imagenet: A large-scale hierarchical image database." Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE 
Conference on. Ieee, 2009.

Selection Expected Novel
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Improved DEMUD visual explanations

Deng, Jia, et al. "Imagenet: A large-scale hierarchical image database." Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE 
Conference on. Ieee, 2009.

Selection Expected Novel
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Improved DEMUD visual explanations

Kiri L. Wagstaff, You Lu, Alice Stanboli, Kevin Grimes, Thamme Gowda, and Jordan Padams. "Deep Mars: CNN Classification of Mars 
Imagery for the PDS Imaging Atlas." Proceedings of the Thirtieth Annual Conference on Innovative Applications of Artificial Intelligence, 2018.
10.5281/zenodo.1049137

Selection Expected Novel
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Improved DEMUD visual explanations

Kiri L. Wagstaff, You Lu, Alice Stanboli, Kevin Grimes, Thamme Gowda, and Jordan Padams. "Deep Mars: CNN Classification of Mars 
Imagery for the PDS Imaging Atlas." Proceedings of the Thirtieth Annual Conference on Innovative Applications of Artificial Intelligence, 2018.
10.5281/zenodo.1049137

Selection Expected Novel
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Ongoing work
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● More investigation into feature-level 
interactions and operations

● Visualizations for fc6, fc7, fc8
● More Experiments with DEMUD
● User Study

Visualization sensitivity analysis
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